
A Semantic Dissimilarity Measure for Concept
Descriptions in Ontological Knowledge Bases

Claudia d’Amato, Nicola Fanizzi, Floriana Esposito

Dipartimento di Informatica, Università degli Studi di Bari
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Abstract. This work presents a dissimilarity measure for expressive De-
scription Logics that are the theoretical counterpart of the standard rep-
resentations for ontological knowledge. The focus is on the definition of
a dissimilarity measure for the ALC description logic based both on the
syntax and on the semantics of the descriptions.

1 Introduction

Recent investigations have emphasized the use of ontologies similarity measures
for Information Retrieval and Integration [1, 2]. However, there is a number of
other tasks that may exploit similarity measures, such as, for instance, clustering
by means of partitional or agglomerative algorithms. Therefore, in a Semantic
Web perspective, similarity measures can enable such algorithms to exploit the
available ontological knowledge expressed in suitable representations, namely
concept languages which are candidate as standard in this context.

Various measures for concept representations have been proposed in the lit-
erature. A measure has been proposed as a function of the path distance between
terms in the hierarchical structure underlying the ontology [3]. Other methods
for assessing the similarity of concept descriptions are based on feature matching
[4] and information content [5]. The former approach uses both common and
discriminant features among concepts and/or concept instances to compute the
semantic similarity. The latter method is founded on Information Theory. A sim-
ilarity measure for concepts within a hierarchy is defined in terms of the amount
of information conveyed by their immediate super-concept. This is a measure of
the variation of information from a description level to a more general one.

Other measures compute the similarity among classes (concepts) belonging to
different ontologies. In [6] a number of measures is presented for comparing con-
cepts located in possibly heterogeneous ontologies. The following requirements
are made: the formal representation supports inferences such as subsumption and
local concepts in different ontologies inherit their definitional structure from con-
cepts in a shared ontology. In particular, the intersection of the sets of concept
instances is assumed as an indication of the correspondence between these con-
cepts. In [7] a similarity function determines similar classes by using a matching
process making use of synonym sets, semantic neighborhood, and discriminating
features that are classified into parts, functions, and attributes.
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Most of the cited works adopt a semantic approach in conjunction with
the structure of the considered descriptions. Besides, the syntactic structure of
the descriptions becomes much less important when richer representations are
adopted due to the expressive operators that can be employed.

Most of these works focussed on the similarity of atomic concepts (within a
hierarchy) rather than on composite ones. Nevertheless, the standard ontology
markup languages (e.g., OWL) are founded in Description Logics (DLs) since
they borrow the typical DLs constructors. Thus, it becomes necessary to inves-
tigate the similarity of complex concept descriptions expressed in DLs. In this
respect, to the best of our knowledge, there has been no comparable effort in
the literature, except the ideas in [8].

In this position paper, we introduce a semantic dissimilarity measure between
descriptions which is suitable for an expressive DL like ALC [9]. The measure is
based on the underlying semantics elicited by querying the knowledge base, as
proposed also in [10]. Moreover, recurring the notion of most specific concept of
an individual, the measure is extended to the individual-concept and individual-
individual cases, which may be exploited in knowledge discovery settings.

2 The Reference Representation Language

The basics of ALC [9] are recalled, a logic which is sufficiently expressive to
support most of the constructors of standard ontology languages.

Primitive concepts, denoted with names from NC = {C,D, . . .}, are inter-
preted as subsets of a domain of objects and primitive roles, denoted with
names taken from NR = {R,S, . . .}, are interpreted as binary relations on such
a domain. Complex descriptions are built using primitive concepts and roles
and the constructors in Table 1. The meaning is defined by an interpretation
I = (∆I , ·I), where ∆I is the domain of the interpretation and ·I is the interpre-
tation function, mapping the intension of concepts and roles to their extension.

A knowledge base K = 〈T ,A〉 contains a T-box T and an A-box A. T is a set
of definitions C ≡ D, meaning CI = DI , where C is the concept name and D
is a description as defined above. A contains extensional assertions on concepts
and roles, e.g. C(a) and R(a, b), meaning, resp., that aI ∈ CI and (aI , bI) ∈ RI .

Definition 2.1. Given two concept descriptions C and D, C subsumes D, de-
noted by C w D, iff for every interpretation I it holds that CI ⊇ DI .

Example 2.1. An instance of concept definition in the proposed language is:
Father ≡ Maleu∃hasChild.Person which corresponds to the sentence: ”a father is a
male (person) that has some persons as his children”. The following are instances
of simple assertions: Male(Leonardo), Male(Vito), hasChild(Leonardo,Vito).

Supposing that Male v Person is known (in the T-Box), one can deduce that:
Person(Leonardo), Person(Vito) and then Father(Leonardo).

Given these primitive concepts and roles, it is possible to define many other
related concepts: Parent ≡ Person u ∃hasChild.Person and FatherWithoutSons ≡
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Table 1. ALC constructors and their meaning.

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
concept C CI ⊆ ∆I

concept negation ¬C ∆I \ CI

concept conjunction C1 u C2 CI
1 ∩ CI

2

concept disjunction C1 t C2 CI
1 ∪ CI

2

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)}
universal restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}

Male u ∃hasChild.Person u ∀hasChild.(¬Male). It is easy to see that the following
relationships hold: Parent w Father and Father w FatherWithoutSons. ut

A related inference used in the following is instance checking, that is deciding
whether an individual is an instance of a concept [9]. Conversely, it may be
necessary to solve the realization problem that requires finding the concepts
which an individual belongs to, especially the most specific one, if any:

Definition 2.2. Given an A-Box A and an individual a, the most specific con-
cept of a w.r.t. A is the concept C, denoted MSCA(a), such that A |= C(a) and
C v D, ∀D such that A |= D(a).

In the general case of a cyclic A-Box expressed in a DL endowed with exis-
tential or numeric restriction the MSC cannot be expressed as a finite description
[9], thus it can only be approximated. Generally an approximation of the MSC
is considered up to a certain depth k. The maximum depth k has been shown to
correspond to the depth of the considered A-Box [11].

Especially for rich DL languages such as ALC, many semantically equiva-
lent (yet syntactically different) descriptions can be given for the same concept.
Nevertheless, equivalent concepts can be reduced to a normal form by means of
rewriting rules that preserve their equivalence [9]:

Definition 2.3. A concept description D is in ALC normal form iff D ≡ ⊥ or
D ≡ > or if D = D1 t · · · tDn (∀i = 1, . . . , n, Di 6≡ ⊥) with

Di =
l

A∈prim(Di)

A u
l

R∈NR

∀R.valR(Di) u
l

E∈exR(Di)

∃R.E


where: prim(C) is the set of all (negated) primitives occurring at the top level
of C; valR(C) is the conjunction C1 u · · · u Cn in the value restriction of role
R, if any (otherwise valR(C) = >); exR(C) is the set of concepts in the value
restriction of the role R.
For any R, every sub-description in exR(Di) and valR(Di) is in normal form.
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3 A Dissimilarity Measure for ALC

As a first step we need to define a dissimilarity measure for ALC descriptions.
In order to achieve this goal, we introduce a function which is necessary for the
correct definition of a dissimilarity measure. This should be a definite positive
function on the set of ALC normal form concept description, defined making
use of the syntax and semantics of the concepts (and roles) involved in the
descriptions. The function is formally defined as follows:

Definition 3.1. Let L = ALC/≡ be the set of all concepts in ALC normal
form and let A be an A-Box with canonical interpretation I. f is a function
f : L × L 7→ R+ defined as follows:
for all C,D ∈ L, with C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj

f(C,D) := ft(C,D) =


1 if C ≡ D
0 if C uD ≡ ⊥

maxi = 1, . . . , n
j = 1, . . . , m

fu(Ci, Dj) otherwise

fu(Ci, Dj) := fP (prim(Ci), prim(Dj)) + f∀(Ci, Dj) + f∃(Ci, Dj)

fP (prim(Ci), prim(Dj)) :=
|(prim(Ci))I ∪ (prim(Dj))I |
|(prim(Ci))I ∩ (prim(Dj))I |

yet, fP (prim(Ci), prim(Dj)) = 0 when (prim(Ci))I ∩ (prim(Dj))I = ∅

f∀(Ci, Dj) :=
∑

R∈NR

ft(valR(Ci), valR(Dj))

f∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

max
p=1,...,M

ft(Ck
i , Dp

j )

where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose w.l.o.g. that N =
|exR(Ci)| ≥ |exR(Dj)| = M , otherwise the indices N and M are to be exchanged
in the formula above.

The function f represents a measure of the overlap between two descriptions
(namely C and D) expressed in ALC normal form. It is defined recursively
beginning from the top level of the descriptions (a disjunctive level) up to the
bottom level represented by (conjunctions of) primitive concepts.

In case of disjunction, the overlap between the two concepts is equal to the
maximum of the overlaps calculated among all couples of disjuncts (Ci, Dj) that
make up the top level of the considered concepts.

Then, since every disjunct is a conjunction of descriptions, it is necessary
to calculate the overlap between conjunctive concepts. This is calculated as the
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sum of the overlap among the parts that make up the conjunctive description.
Specifically, a conjunctive form can have three different types of terms: primitive
concepts, universal restrictions and existential restrictions. Since conjunction (u)
is a symmetric operator, it is possible to put together every type of restriction
(occurring at the same level) so it is possible to consider the conjunctions of
primitive concepts, the conjunctions of existential restrictions and the conjunc-
tion of universal restrictions as specified in the definition of ALC normal form.

Next, the amount of the overlap for the three different type of conjunc-
tion is defined. Particularly, the amount of overlap between two conjunctions of
(negated) primitive concepts is null if the they do not share any individual in
their extension. Conversely, if the two concepts share some individual the overlap
between them is computed as the ratio between the union and the intersection
of their extensions which expresses how far the partial overlap is from the total
overlap of the two concepts.

The computation of the overlap between, resp., descriptions expressed by
universal and existential restrictions is a bit more complex. Considering the
conjunction of universal restrictions, it is worthwhile to recall that every such
restriction is a single conjunction linked by respect to a different role (since
∀R.C u ∀R.D ≡ ∀R.(C u D)). Moreover, the scope of each restriction is ex-
pressed in normal form. Thus, the amount of the overlap between two subcon-
cepts (within Ci and Dj , resp.) that are scope of a universal restriction on a
certain role R is given by the overlap between two concepts in normal form
(computed by ft); of course, if no disjunction occurs at the top level, it is possi-
ble to regard the concept description as a disjunction of a single term to which
ft applies in a simple way. Since one may have a conjunction of concepts with
universal restrictions, one per different role, the overlap of this conjunction is
given by the sum of the overlap yielded by each restriction, rather than every
restriction scope. Note that, when a universal restriction on a role occurs only in
one of the descriptions, then the computation assumes > as the corresponding
concept in the other description.

Now we turn to analyze the computation of the amount of the overlap be-
tween two descriptions made up of conjunctions of existential restrictions. For
the dissimilarity between existential restrictions, we may recur to existential
mappings. Supposing that N = |exR(Ci)| ≥ M = |exR(Dj)|, such a mapping
can be defined as a function α : {1, . . . , N} 7→ {1, . . . ,M}. If each element of
exR(Ci) and exR(Dj) is indexed with an integer in the ranges [1, N ] and [1,M ],
resp., then any function α maps each concept description Ck

i ∈ exR(Ci) to
Dp

j ∈ exR(Dj). Since each Ck
i (resp. Dp

j ) is in normal form, it is possible to
calculate the amount of their overlap using ft. Fixed a role R and considered
a certain Ck

i (with k ∈ [1, N ]), the amount of the overlap between Ck
i and Dp

j

(with p ∈ [1,M ]) is computed. We are supposing that N ≥ M , thus each exis-
tential restriction on role R is coupled with the one on the same role in other
description scoring the maximum amount of overlap. These maxima are summed
up per single role. In case of absence of role restrictions on a certain role from
either description then it is considered as the concept >.
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Summing up, we have defined a measure whose baseline (counts on the ex-
tensions of primitive concepts) depends on the semantics of the knowledge base,
as conveyed by the ABox assertions. This is in line with to the ideas in [10, 8],
where semantics is elicited as a probability distribution over the domain of the
interpretation ∆.

Now, it is possible to derive a dissimilarity measure based on f as follows

Definition 3.2. Let L be the set of descriptions in ALC normal form and let
f be an overlap function defined as above. The dissimilarity measure d is a
function d : L × L 7→ [0, 1] such that, for all C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj

concept descriptions in ALC normal form:

d(C,D) :=


1 if f(C,D) = 0
0 if f(C,D) = 1
1

f(C,D) otherwise

The function d measures the level of dissimilarity between two concepts,
say C and D, in ALC normal form using the function f that expresses the
amount of overlap between the two concepts. Particularly, if f(C,D) = 0 then
this means that there is no overlap between the considered concepts, therefore
d must indicate that the two concepts are totally different, indeed d(C,D) = 1
i.e. it amounts to the maximum value of its range. If f(C,D) = 1 this means
that the two concepts are totally overlapped and consequently d(C,D) = 0
that means that the two concept are undistinguishable, indeed d assumes the
minimum value of its range. If the considered concepts have a partial overlap
then their dissimilarity is lower as much as the two concept are more overlapped,
since in this case f(C,D) > 0 and consequently 0 < d(C,D) < 1.

Let us recall that, for every individual in the A-Box, it is possible to calculate
the most specific concept of an individual a w.r.t. an A-box, MSC(a) (see Def.
2.2) or at least its approximation MSCk(a) up to a certain description depth k.
In some cases these are equivalent concepts but in general MSCk(a) w MSC(a).
This notion is exploited to lift the individuals to the concept level.

Let a and b two individuals in a given A-Box. We can consider A∗ = MSCk(a)
and B∗ = MSCk(b) (we also suppose that they are in ALC normal form). Now,
in order to assess the dissimilarity between the considered individuals, the dis-
similarity measure d can be applied to these descriptions, as follows:

d(a, b) := d(A∗, B∗) = d(MSCk(a),MSCk(b))

Analogously, the dissimilarity value between a concept description C and an
individual a can be computed by determining the MSC approximation of the
individual and then applying the dissimilarity measure:

∀a : d(a,C) := d(MSCk(a), C)

This case may turn out to be particularly handy both in inductive reasoning
(construction, repairing of knowledge bases) and in information retrieval.

We prove that d function actually is a dissimilarity measure (or dissimilarity
function [12]), according to the following formal definition:
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Definition 3.3. Let S be a non empty set of elements. A dissimilarity measure
for S is a real-valued function r defined on the set S×S that fulfills the properties:
1. r(a, b) ≥ 0, ∀a, b ∈ S (positive definiteness);
2. r(a, b) = r(b, a), ∀a, b ∈ S (symmetry);
3. ∀a, b ∈ S : r(a, b) ≥ r(a, a)

Proposition 3.1. The function d is a dissimilarity measure on L = ALC/≡.

Proof.
1. trivial: by construction d computes dissimilarity by using sums of positive
quantities and maxima computed on sets of such values.
2. by the commutativity of the sum and maximum operators.
3. by the definition of d, it holds that d(C,C) = 0 and d(C,C ′) = 0 if C is
semantically equivalent to C ′. In all other different cases, ∀D ∈ L and D not
semantically equivalent to D (C 6≡ D), we have: d(C,D) > 0 ut

The computational complexity of our dissimilarity measure d is strictly re-
lated to that of f . The measure also relies on some reasoning services, namely
subsumption and instance-checking, therefore its complexity depends on the
complexity of these inferences too. In order to assess the complexity of d, we
distinguish three different cases descending from being d based on ft.
Let C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj be two descriptions in normal form:

– Case 1: C and D are semantically equivalent. Only subsumption is involved
in order to verify the semantic equivalence of the concepts. Thus Compl(d) =
2 ·Cmpl(w), where Cmpl(·) and w represent, resp., complexity and subsumption;
– Case 2: C and D are disjoint yet not semantically equivalent. Subsumption
and conjunction are involved. Being the time complexity of conjunction a con-
stant, we have the same complexity of the previous case
– Case 3: C and D are not semantically equivalent nor disjoint. The complex-
ity depends on the structure of the concepts. It is necessary to compute fu for
n ·m times; so the complexity is: Cmpl(d) = nm ·Cmpl(fu) = nm · [Cmpl(fP ) +
Cmpl(f∀) + Cmpl(f∃)]. Thus we analyze the complexity of fP , f∀, f∃.
The dominant operation when computing fP is instance checking (IC) used for
determining the concept extensions. So we conclude that C(fP ) = 2 · C(IC).
The computation of f∀ and f∃ apply recursively the definition of ft on less com-
plex descriptions. A maximum of |NR| calls of ft are needed for computing f∀,
while the calls of ft needed for f∃ are |NR| · N · M , where N = |exR(Ci)| and
M = |exR(Dj)| as in Def. 3.1. Summing up as in the previous equation:
Cmpl(d) = nm · [(2 ·Cmpl(IC)) + (|NR| ·Cmpl(ft)) + (|NR| ·M ·N ·Cmpl(ft))]

We conclude that the complexity of the computation of d depends on the
complexity of the instance-checking for ALC which is P-space [9]. Neverthe-
less, in practical applications, these computations may be efficiently carried out
exploiting the statistics that are maintained by the DBMSs query optimizers.
Besides, the counts that are necessary for computing the concept extensions
could be estimated by means of the probability distribution over the domain.
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4 Conclusions and Further Developments

Similarity measures turn out to be useful in several tasks such as, classification,
case-based reasoning, clustering, etc. A novel dissimilarity measure d has been
introduced, derived from the measure f of the overlap betweenALC descriptions,
and based on the underlying semantics based on ABox interpretation.

We have also shown how to apply this function to measuring the dissimilarity
between individuals and also a individual-concept dissimilarity, which may be
more useful in knowledge discovery tasks.

In particular, defining a measure that is applicable for both the concepts to
individual similarity and between individuals one, it is suitable for agglomerative
clustering and for divisional clustering too. A further investigation will concern
the derivation of a distance measure, which amounts to finding a measure that
fulfils the triangular property.

These ideas are being exploited also for defining kernels on rich representa-
tions like DLs, thus allowing the exploitation of the efficiency of SVMs and the
other related methods.
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